TITLE

INSTITUTION

REPORT NO
PUB DATE
NOTE
AVAILABLE FROM
PUB TYPE

EDRS PRICE
DESCRIPTORS

Growth in Employment of Science and Engineering Doctorates Continues, Led by Computer Scientists. Science Resources Studies Highlights.
National Science Foundation, Washington, D.C. Div. of Science Resources Studies.
NSF-82-328
30 Nov 82
6p.
National Science Foundation, Division of Science Resources Studies, Washington, DC 20550.
Reports - Descriptive (141) -- Statistical Data (110)
MF01/PCOl Plus Postage.
Biological Sciences; Computer Science; *Doctoral Degrees; Employers; *Employment Opportunities; Engineering; *Engineers; Females; Graduate Surveys; Higher Education; Labor Market; Mathematics; Minority Groups; Occupational Surveys; Physical Sciences; Salaries; *Scientists; Social Sciences

ABSTRACT
Doctorate holders who received their degrees in science or other fields between 1930 and 1972 and who held jobs in the sciences and engineering (S/E) were surveyed. Findings include the following: employment of doctorates in S/E activities continued to grow between 1979 and 1981 at the same rate since 1975, about 5 percent per year, reaching a total of 314,000 in 1981; this growth in job opportunities was about equal to the growth in available supply; declines in S / E utilization rate (i.e., the number employed in S / E activities per $100 \mathrm{Ph} . \mathrm{D}$. scientists and engineers in the labor force) were particularly notable in the mathematical and social sciences over the 1973-1981 periad; S/E job opportunities for Ph.D. computer, life, and environmental scientists and engineers remained strong; although representing only 3 percent of the total, computer sciences outpaced all other doctoral S/E employment between 1979 and 1981, growing at an average annual rate of 16 percent; job opportunities Continued to shift from educational institutions and government to business/industry; although 55 percent of all doctoral S / E employment was at educational institutions, the demand in academia continued to increase at a below-average rate; and minorities and women continued to increase their share of the doctoral population. (SW)

[^0]GROWTH IN EMPLOYMENT OF SCIENCE AND ENGINEERING DOCTORATES CONTINUES, LED BY COMPUTER SCIENTISTS

-
 N
 น
 น
 \sim
 \square

\cdots
\therefore

USS. DEPARTMENT OF EDUCATION NATIONAL INSTITUTE OF EDUCATION* EDUCATIONAL RESOURCES INFORMATION CENTER IERICI
This divcument lias bee reproduced
 orymatitug it
 remionductron quality
-PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY'

Bututs of weave of equine m stated in the rs due

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC) Desitroan er pother

Prepared in the Demographic Studies Group, Division of Science Resources Studies

Growth in Employment of Science and Engineering Doctorates Continues, Led by Computer Scientists

Abstract

Surveys of doctorate-holding scientists and engineers' have been conducted biennally for the Nothonal Science Fuindation (NSF) and other Federal Government agenctes by the National Research Councll of the National Academy of Sciences since 1973. The science und engineering iS El populo- \because tion surveted consisted of individuals in the United States who held S E docturates or who had recenved doctorates in non-S.E fields but were emploved in S:E positions. The 1973 survey included - indurduals who had received their doctorates in the 42 -vear pertod between lanuury 1. 1930. and lune 30.1972 Subsequent surveys in this biennial series conthined to take account of a 42 -vear periad ; by dropping the two oldest cohort years und udding the two most recent.

Highlights

- Employment of doctorates in science and engineering [S, E) activities continued to grow between 1979 and 1981 at "the same rate since 1975. about 5 percent per year. reaching a total of 314.000 in 1981.
- This growth in S / E job opportunities was about equal to the growth in available supply: Although practically all (99 percent) Ph.D. scientists and engineers are emploved. a small but increasing share of those employed have been working outside S/E fields (6 percent in 1973 and 9 percent in 1981). Declines in the S/E utilization rate (i.e., the number employed in S/E activities per $100 \mathrm{Ph} . \mathrm{D}$. scientists and engineers in the labor forcel were particularly notable in the mathematical and social sciences over the 1973 -81 period. During this time. the S/E utilization rate for mathematical sciences dropped 5 percentage points. to the 90 -percent range. while that for social sciences dropped 4 percentage points to the 80 -percent range. S / E job opportunities. however. for Ph.D. computer. life. and environmental scientists and engineers-as measured by this rate-continue to remain strong. In all fields the most of ten cited reason for working outside science and engineering was "more attractive career options": less than one in ten cited the unavailability of an S/E position.
- Although representing only 3 percent of the total. computer sciences outpaced all other doctoral S/E employment between 1979 and 1981. growing at an average annual rate of 16 percent. Psychology and engineering reported slightly above-average growth rates (6 percent for each). while the physical and mathematical sciences grew considerably below the average (3 percent and 0 percent. respectively).
- Job opportunities continued to shift from educational institutions and government to business/industry. S/E employmept in the industrial sector increased 18 percent between 189 and 1981. representing an average annual growth rate of 9 percent. up from a comparable rate of 7 percent for

[^1]1973-7. and almost 8 percent for 197:-79. In contrast. as noted earlier. total doctoral S/E employment increased 9 percent between 1979 and 1981. representing an average annual rate of growth of 5 percent-the same as $197-79$ and down from 6 percent between 1973 and 197%. Thus the shift into business/ industry observed between $19: 9$ and 1981 represents an acceleration of longer term changes.

- Although 55 percent of all doctoral S/E employment is in educational instifutions. the demand in academia connnues to increas, fate below average. This sector increased 8 percent between 1979 and 1981. representing an average annual growth rate of less than 4 percent per year. continuing the $197 \pi-79$ level. and down from 6 percent per year between 1973 and 197\%. As a consequence, the share of employment in academia declined from 59 percent to 55 percent of the total between 1973 and 1981. Demographic considerations such as the shrinking pool of the college-age population point to continuing employment difficulties for S/E doctorates in the academic sector.
- These sectoral shifts have produced changes in the distribution of doctoral work activity. Research and development. and its management. continue to be the prtmary work activity of about half of all Ph.D.s working in science and engineering. Those who cited teaching as their primary work activity. however. declined from 37 percent of this group in 1973 to 31 percent in 1981. reflecting the slower than average growth of the academic sector noted earlier. This decline was offset by proportional increases largely in sales/professional services and. to a lesser extent. in development.
- Minorities and women continue to increase their share of the doctoral S/E population. The number of minority Ph.D. scientists and engineers rose from 5 percent to 10 percent of the total Ph.D. S/E population betweeh 1973 and 1981. Although the number of blacks more than doubled during those years. blacks still represented only 1 percent of the total by 1981. The number of women Ph.D. scientists and engineers also more than doubled between 1973 and 1981 with their share of the total rising from 9 percent to 13 percent.

Labor Force Status

Conditions in the labor market remained generally favorable for U.S doctoral scientists and engineers in 1981. While the number within the labor force (ie., supply rose almost 10 percent between 1979 and 1981. employment opportunities kept pace ${ }^{2}$ As a result. fewer than 1 percent of those in the doctoral S E labor force were unemployed in 1981. unchanged from the level recorded since this series of survegs began in 1973. Because of their high levels of skill and training. Ph.D. scientists and engineers experience relative lg low levels of unemployment. Thus. while unemployment rates are a commonly accepted indicator of labor market conditions. they are a less important gauge of these conditions for doctoral scientists and engineers. Employment outside $\mathrm{S}^{\circ} \mathrm{E}$ fields. however. can indicate underutilization for doctoral scientists and engineers. Although practically all PhD. scientists and engineers who wish to work are employed (99 percent). 9 percent in 1981 were working in jobs outside science and engineering. Only a small fraction of those so employed, however. cited the unavailability of an S / E job as their reason for non-S/E employment. The most often cited reason was "more attractive career options" which may or ma ss not connote truly "voluntary" choices.
The trend in these non-S/E utilization rates suggests that there may be increasing amounts of under utilization. particularly in fields where demand may be relatively weak.. The percents of non-S/E employment across fields display a general upward drift over the 1973-81 period. and show marked increases- 4 to 5 percentage points-in the mathemetical and social sciences (chart 11 .

The labour force includes those employed in any job and those seeking
englosment Chart 1. Percent of doctoral science/enginearing (S/E) labor
force working outside science/engineering by field:

1973 and 1981 | 0 | 5 | 10^{0} | 15^{2} | 20 |
| :--- | :--- | :--- | :--- | :--- |
| | 1 | 100 | | |

The non-S,E utilization rates for women doctor el sties fists and engineers continued to increase less than those for men. Moreover. whereas the rate for men increased in every major SE field between 19^{-73} and 1981. it declined substantially for women in the physical sciences and enginearing and to a lesser extant in the entarommental and life sciences.

Employment by Sector

Between 1973 and 19:9. total employment of doctorates in science and engineering grew at 6 percent per year and employment in the businessindustry sector grew at ; percent. Between 1979 and 1981, however. the average annual growth rate of total- S/E employment fell slightly-to 5 percent per year - while the rate for business industry climbed to 9 percent. As a consequence of this relatively rapid industrial growth the share of PhD. is in S E employment in this sector rose from 24 percent to 28 percent between 1973 and 1981.

About 90 percent of the 1979-81 growth of Ph .D. scientists and engineers in the industrial sector took place among those working primarily in $R \& D^{3}$ activities, even though only 48 percent of all S, E industrial doctorates are engaged primarily in research and development. This concentration reflects. in part. a 10 -percent increase in real terms in industrial $R \& D$ expenditures. Correspondingly. growth in industrial $R \& D$ spending reflects. in part. a change in corporte strategy which places greater emphasis on research and development as a source of future growth and new market opportunities. Also. the policies of the Federal Government influence industry's expenditures through tax incentives and establishment of regulations and minimum standards in areas such as environmental pollution, food and drug production. and public safety. ${ }^{4}$
While employment in the industrial sector wasprowing faster than average and at an accelerating rate during the seventies. the reverse was taking place in the educational institutions. Between 1973 and 1979 employment in academia showed an annual growth rate of 5 percent: between 1979 and 1981 the annual rate fell to under 4 percent. ${ }^{5}$ As a result. the share of academic employment declined from 37 percent to 31 percent of the total between 1973 and 1981. Slower growth in this sector resulted in part from the current and projected future declines in enrollment growth.
Despite the decline in doctoral S/E employment in asademia. selected work activities show marked strength. For example. research showed stronger than average growth between 1973 and 1979 and grew at almost double the average rate of all employment in academic work activities between 19,9 and 1981.

[^2]
S/E Employment Fields

For all sectors combined. a great deal of variation appeared in the S E employment growth rates among S E fields. Except for the mathematical and social sciences. howeter. the growth rate within each field was about the same for the 1979-81 period as it has been over the previous six years [chart 21 . The differences in growth rates among fields indicate a consistent pattern of shifts in S E employment away from the physical and mathematical sciences toward engineering and the computersciences, primarily reflecting the shifting demands of both industry and academia noted earlier In the most recent period. 1979-81, employment of computer scientists grew at a rate more than three times the average: employment of engineers grew almost one and one-half thmes the average. Computer scientists. however. comprise less than 3 percent of all doctoral scientists and engineers.

Only employment of computer and social scientists increased at rates in excess of the average in academia. The duerage annual growth rate for computer scientists was 10 percent over the 1973.79 period and 12 percent between 1979 and 1981. Among social scientists. the comparable growth rates were? percent and 5 percent. The growth among computer scientists is not surprising and reflects both the rapidly increasing number of students majoring in the computer sclences and the increases in the number of nonmajors recelving some training in computer fields. The growth among social scientists seems to result from an upgrading of educational qualifications for social science employment in educational institutions. Employment of social scientists at less than the doctoral level in academia remained fairly

Chart 2. Average annual rate of growth of science/ enginearing (S/E)-employed Ph.D.'s by field: 1973-79 and 1979-81

stable during the late seventies. Thus. it appears that educational institutions are replacing those sobial scientists without the Ph.D. with those who hold doctorates. The relatively slow growth among engineers $/ 3$ percent per year between 19.9 and 1981) reflects the inability of educational instututions to attract Ph.D. engineers. Engineering colleges reported that 10 percent of ther full-time faculty positions were vacant in the fall of 1980 ?

Women and Minorities

The number of female Ph D. scientists and engeneers continued to increase at an avegage annual rate of 10 percent between 19:9 and 1981 table 11 . This morease is twice that of'men The female share of the Ph D S Epupulation rose

Table 1. Selected characteristics of doctoral scientists and engineers in the United States: 1973, 1979, and 1981

from 9 percent in 1973 to 13 percent in 1981. Females, however contmue to earn less than males. The median annual salary of PhD women sctentists and engineers was 76 per. cent that of men in 1981. This difference results, in part. from the emplosment distribution infthe tarious fields For example lour-fifths of women doctural scientists and engineery work in the hife and soctal sciences. and psuchologythree of the four lowest paying S / E fields. When standardized tor field distribution, the salary gap lessens by 5 percentage pounts.

Female salaries differed litle from those of males among soung cohorts. For example. the 19.9 and 1980 temale doctoral S E reciptents earned 88 percent the salaries of males and wheved wrtual parity in the mathematical and environmental sciences and psychology: Compared with salary differences fur the total group. however. the smaller differentids for the inexperienced cohorts suggest that the salary gap widens with years of experience (table 2).

Although starting trom a much smaller base thà women. minority Ph.D scientists and engmeers also experienced rapid growth between 19.3 and $1 y^{2} y$ and accelerated the pace between 1929 and 1981 to roughls 15 percent per sear Their share of the total S E doctord population increased from 5 percent to 10 percent between $19^{7} 3$ and 1981 The number of blacks more than doubled and the number of Asians tripled. The black share of PhD sctentists and engineers. however. increased ank shehtly. trum $19 y$ percent in 1973 to 1.3 percent in 1981. While the Asian share increased from 4 percent to almast 8 petcent in 1481

Salaries of black Ph D satatists and -agmeers wete slightly over yo percent those of whites Astans earned d median annual salary that was roughts the same as that of whites

Detailed statnitical tables on thas subpect will be avallable in early 1983.

Table 2. Median annual salaries, Ph. D. scientists and engineers: 1981

Field	All science/engineering doctoral recipients			Female salaries as a percent of male	1979 and 1980 science/engineering doctoral recipients			Female salanies as a percent of male
	8oth sexes	Male	Female		Both sexes	Male	Female	
Total, all science/ engineering fields	\$34.700	\$35.600	\$27.000	76	\$25.300	\$25.900	\$22.800	88
Physical sciences	36.200	36.500	29.400	81	28.700	28.800	27.600	96
Mathematical sciences	31,300	31.900	26.800	84	22.100	21.800	22.600	104
Computer sciences....	34.400	34,700	28.700	83	29.400	30.100	25.900	86
Environmental sciences	36,500	36.900	29.200	79	25.300	25.300	24.700	48
Engineering.	40.200	40.300	32.000	79	31.900	32.000	28.600	89
Lite sciences	33.200	34.300	27.100	79	23.100	23.500	22.100	94
Psychology	30.700	32.400	26.200	81	22.700	22.800	22.400	98
Social sciences	30.800	31.700	25.900	82	23.200	23.400	21.600	92

SOURCE National Science Foundation

National Science Foundation

Washington. D.C 20550

Official Business

PEANATYGOR PRIVATE USE $\$ 300$
RETURN THIS COVER SHEET TO ROOM 233. IF YOU DO NOT WISH TO aECEIVE THIS MATEMIAL D. OA IF change of addeess is meeded a (indicatf CHANGE INCLUDING ZIP CODE).

Postage and Fees Pard National Science Foundation

THIRD CLASS
Bulk Rate

-

[^0]:

 * Reproductions supplied by EDRS are the best that can be made ($\underbrace{*}_{*}$ * from the original document.

[^1]: 'These surveys were expanded to include doctorate-holders in the humanthes in 19-- 19-9. and 1981 *

[^2]: 'Excludes the management of research and development

 - See National Science Foundation. National Patterns af Science and Tech. nology Resources. 1981 INSF Ei-3111 Washington. DE Supt of Documents. IS Government Printing Office. p iv
 'Thesame declining trend is found in Ph D academic S. E employment data supplied by the educational institutions themselves The average annual rate of growth for $19-80-7 y$ was 34 percent. that fur $1928-81$. 18 percent See National Science Foundation. Academic Science Scientists and Engineers. Iunuart. 1981 IDetalled Statistical Tables INSF B2-3051 (Washington. OC C. tables $\mathrm{B}-4$ and $8-111 . \mathrm{p}$ in
 - National Science Foundation. Aeoǜemic Science 1972-di ReD Funds. Scientists and Engineers. Graduate Enrollment and Support INSF 81.326) i Washington DC Supt of Documents. IIS Discernment Printing Office. p 11

